
Recovering Semantic Traceability Links between 
APIs and Security Vulnerabilities: An Ontological 

Modeling Approach   
Sultan S. Alqahtani          Ellis E. Eghan          Juergen Rilling  
Department of Computer Science and Software Engineering 

 Concordia University 
Montreal, Canada 

{s_alqaht, e_eghan}@encs.concordia.ca, juergen.rilling@concordia.ca 
 

Abstract— Over the last decade, a globalization of the 
software industry took place, which facilitated the sharing and 
reuse of code across existing project boundaries. At the same 
time, such global reuse also introduces new challenges to the 
software engineering community, with not only components but 
also their problems and vulnerabilities being now shared. For 
example, vulnerabilities found in APIs no longer affect only 
individual projects but instead might spread across projects and 
even global software ecosystem borders. Tracing these 
vulnerabilities at a global scale becomes an inherently difficult 
task since many of the existing resources required for such 
analysis still rely on proprietary knowledge representation.  

In this research, we introduce an ontology-based knowledge 
modeling approach that can eliminate such information silos. 
More specifically, we focus on linking security knowledge with 
other software knowledge to improve traceability and trust in 
software products (APIs). Our approach takes advantage of the 
Semantic Web and its reasoning services, to trace and assess the 
impact of security vulnerabilities across project boundaries. We 
present a case study, to illustrate the applicability and flexibility 
of our ontological modeling approach by tracing vulnerabilities 
across project and resource boundaries.  

 
Keywords— Knowledge modeling, ontologies, reasoning, source 

code analysis, vulnerabilities and patches  

I.  INTRODUCTION 
The globalization of the software industry has been a 

driving force in replacing traditional project boundaries by 
promoting a free flow of information, which facilitate reuse 
and sharing of resources and knowledge across resource 
boundaries [1] [2]. For example, open-source software (OSS) 
is published on the Internet using specialized code sharing 
portals e.g., Sourceforge1, GitHub2, to allow for components 
to be shared, reused and extended by developers around the 
world. At the same time, such global reuse also introduces 
new challenges to the software engineering community, with 
not only components but also their problems and 
vulnerabilities being now shared.  

A recent report in 2012 [1] shows that 88% of the code in 
today’s applications come from OSS libraries and 
frameworks; with 26% of these OSS frameworks/libraries 

                                                            
1 https://sourceforge.net/ 
2 https://github.com/ 

having known vulnerabilities, which often remain 
undiscovered. In 2013, “Using Components with Known 
Vulnerabilities” [2] is ranked 9th in the OWASP Top Ten [3] 
list of software security flaws.  

Current approaches for ensuring secure software fall in 
two main categories. The first category requires organizations 
to create barriers that prevent developers and end-users from 
performing potential risky actions, e.g., runtime protection. 
While this approach can reduce the exposure to vulnerabilities, 
it does not address the fundamental cause of such 
vulnerabilities. The other category involves techniques that 
avoid or reduce the introduction of potential vulnerabilities 
already at the development stage, by introducing and applying 
best secure coding practices e.g., black-box testing, and static 
analysis. Unfortunately, most of these analysis techniques are 
limited to artifacts created within a project context and do not 
consider in their analysis the reuse and sharing of third party 
components outside their original development scope.  

In our research, we introduce a novel approach for 
automatically tracing source code vulnerabilities at the API 
level across project boundaries. More specifically, we take 
advantage of the Semantic Web and its technology stack (e.g., 
ontologies, Linked Data, reasoning services) to establish a 
unified knowledge representation that can link and analyze 
vulnerabilities across project boundaries. Through this unified 
representation, we can eliminate information silos that the 
current analysis approaches have to deal with and introduce 
new types of vulnerability analysis at a global scale. 

In our prior work [4], we introduced our Security 
Vulnerabilities Analysis Framework (SV-AF), a modeling 
approach which establishes traceability links between security 
and software databases. In this research, we extend our 
previous SV-AF with knowledge from version control systems 
(VCS) repositories to provide additional analysis services such 
as: (1) Identifying and tracing the use of vulnerable code in 
APIs to projects; and (2) provide notifications about 
vulnerabilities found in APIs (and their dependent component) 
that can affect a specific project.  

Motivating Example: Existing research on recommending 
APIs to developers (e.g., [5]) has focused on recommending 
potentially useful APIs to developers to reduce development 
and testing time. 

10th IEEE International Conference on Software Testing, Verification and Validation

978-1-5090-6031-3/17 $31.00 © 2017 IEEE

DOI 10.1109/ICST.2017.15

80



Fig. 1: Integrating code and build information with knowledge from other heterogeneous resources 

For example, in [5], the authors explicitly recommend 
developers to use an older version of Apache Derby (version 
10.1.1.0) due to its widespread usage/popularity. However, like 
any other software project, Apache Derby is also susceptible to 
security vulnerabilities. By recommending this particular older 
version of Derby, the author in [5] actually recommended a 
version of Apache Derby which has two known security 
vulnerabilities (Table I). These known vulnerabilities had 
already been published in the National Vulnerability Database 
(NVD)3 repository. 

TABLE I. SAMPLE DERBY VERSIONS WITH REPORTED VULNERABILITIES 
Derby version Release Year Reported vulnerabilities in NVD 

10.1.1.0 2005 3 
10.5.3.0 2009 1 

As the example illustrates, the author of the paper was 
most likely unaware of these reported vulnerabilities since this 
information is not readily available to developers. Making this 
information readily available to maintainers and security 
experts would allow for seamless knowledge integration and 
sharing. Furthermore, by using standardized and formal 
knowledge representation techniques (e.g., Semantic Web and 
its technology stack), novel analysis approaches across 
knowledge boundaries at both the intra and inter-project level 
can be introduced.  

For example, Fig. 1 shows an example of an IDE with an 
open Maven4 POM (ProjectX.pom) and Java file (A.java). In 
our approach, we extend a developer’s accessible knowledge 
from local project’s pom and Java files, to knowledge 
resources outside the current project boundaries (Fig.1). Using 
an ontology-based knowledge modeling approach we can now 
integrate, share and reason upon these heterogeneous 
resources (even at a global scale). In this example, such a 
knowledge base includes project-specific resources (e.g., issue 
tracker, versioning repositories) as well as resources external 
to the project, such as NVD and Maven build dependencies 
from other projects. Using the reasoning services provided by 
the Semantic Web, we can now infer direct and indirect 
dependencies for the local project (ProjectX in Fig. 1). In 
addition, giving the bi-directional links in our modeling 
approach, we can expand our analysis to a global scale to 

                                                            
3 https://nvd.nist.gov/ 
4 http://search.maven.org/ 

answer questions like this: Which projects might be directly or 
indirectly affected by a vulnerable component/library? In our 
example, ProjectX has an indirect dependency on ProjectZ 
(via ProjectY’s transitive dependencies) and makes use of a 
vulnerable ProjectZ component, using method X.bar() within 
that component.  

As our example illustrates, integrating source code 
information with other knowledge resources (e.g., 
vulnerability and build repositories) can support for new types 
of analysis even at a cross-project boundary (global) scale. In 
addition, these analysis results can now be used to further 
enrich existing analysis tools. For example, existing tools 
cannot be extended to not only recommend suitable APIs but 
to instead recommend now suitable APIs with no known 
direct/indirect vulnerabilities or to automatically notify 
developers when an already used API becomes exposed to a 
potential vulnerability.  

The remainder of this paper is organized as follows: 
Section II introduces background relevant to our research. 
Section III explains the methodology we used to instantiate 
our modeling approach for analyzing APIs vulnerability 
impacts, followed by Section IV which introduces our case 
study and its findings. Section V provides a discussion and 
implications of our findings. Section VI discusses the potential 
threats to the validity of our approach. In Section VII, we 
compare our work with related work, followed by Section 
VIII, which concludes the paper and discusses future work. 

II. BACKGROUND 

A. Ontologies in Software Engineering 
In philosophy, ontology is the science of being [6] and has 

been adapted by the computing world as “a formal 
specification of a conceptualization” [7]. Despite ontologies 
and Knowledge Engineering sharing the same roots, ontologies 
emphasize aspects such as inter-agent communication and 
interoperability [8]. In details, an ontology defines a set of 
primitives to model a domain of knowledge or discourse. This 
set of representational primitives are typically classes (or sets), 
attributes (or properties), and relationships (or relations among 
class members) [9]. An essential aspect of ontologies is that 
they must be formal and, more precisely, understandable by a 
computer or “codified in a machine interpretable language” 
[10]. 

Ontologies in SE. Representing software in terms of 
knowledge rather than data, ontologies can be more abstract 

81



than, say, database schemata, and provide better support for 
semantics [6]. With the adoption of Description Logic (DL) as 
a major foundation of the recently introduced Semantic Web 
and Web Ontology Language (OWL) [11], there is a trend to 
utilize ontologies or introduce taxonomies as conceptual 
modeling techniques into software engineering domain. These 
existing approaches support knowledge representation and 
sharing, and automated reasoning. For example, in 
requirement engineering, ontologies have been used to support 
requirement management [12], traceability [13], and use case 
management [14]. In software testing domain, KITSS [15] is a 
knowledge-based system that can provide assistance in 
converting a semi-formal test case specification into an 
executable test script. In software maintenance domain, 
Ankolekar et al [16] provide ontology to model software, 
developers, and bugs. Ontologies have also been used to 
describe the functionality of components using a knowledge 
representation formalism that allows more convenient and 
powerful querying. For example, the KOntoR [17] system 
allows storing semantic descriptions of components in a 
knowledge base and performing semantic queries on it. In 
[18], Jin et al. discuss an ontological approach of service 
sharing among program comprehension tools.  

Ontologies vs. Models. A model is “an abstraction that 
represents some view on reality, necessarily omitting details, 
and for a specific purpose” [19]. However, in SE, ontologies 
and models try to address the same problems (representing the 
software complexity in an abstract manner) but from very 
different perspectives. The differences between ontologies and 
models often result in different artifacts, uses, and possibilities. 
For example, modern SE practices advice developers to look 
for components that already exist when implementing 
functionality, since reuse can avoid rework, save money and 
improve the overall system quality [20]. In this example, 
ontologies can provide clear advantages over models in 
integrating information that normally resides isolated in several 
separate component descriptions. Furthermore, models (e.g., 
UML) rely on the close world assumption, while ontologies 
(e.g., OWL) support open-world semantics. OWL, an example 
of ontology languages, is a “computational logic-based 
language” that supports full algorithmic decidability in its 
OWL-DL (description logic) variant. It is not possible to use 
algorithms supported by OWL (e.g., subsumption) for 
modeling languages due to their different semantics. Additional 
differences between ontologies and models are reported and 
discussed in [21]. 

B. Source Code Analysis 
The applicability of code analysis tools depends on their 

ability to represent embedded source code semantics and the 
specific analysis context they are used for. Many analysis 
tools and techniques have been developed to support specific 
source analysis contexts (e.g., points-to analysis [23, 24], 
dependency analysis [25], flow analysis [26], call graph 
construction [26], program slicing [27], and impact analysis 
[28]). The level and scope of these analyses techniques vary, 
ranging from those considering only the behavior of individual 
statements and declarations to those that include the complete 

source code of a program. However, common to these 
techniques is that they aim to provide analysis results that are 
as complete and precise as possible and exclude in their 
analysis other software artifacts (e.g., build repository or issue 
tracker information). Furthermore, given the complexity of 
software systems [29] many approaches rely on compilable 
project source code for their analysis, limiting their analysis to 
project-level scope. A large body of research exists in 
detecting vulnerabilities at the source code level, using both 
static and dynamical analysis approaches [19, 23]. In addition 
to such analysis tool support, public software security 
vulnerabilities databases have been introduced to create 
awareness of known vulnerabilities in the source code and to 
provide a reference to software vendors on how to mitigate 
these vulnerabilities (e.g., security patches). 

C. Security Vulnerability Databases 
In the software security domain, a software vulnerability 

refers to mistakes or facts about the security of software, 
networks, computers or servers. Such vulnerabilities represent 
security risks to be exploited by hackers to gain access to 
system information or capabilities [31]. As discussed in [32] 
new software vulnerabilities are often first reported in 
software repositories (e.g., issue trackers, mailing lists) of the 
affected projects or mentioned on Q&A sites (e.g., 
StackOverflow). A common characteristic of such early 
vulnerability reporting is that information about vulnerabilities 
is dispersed across multiple resources and their descriptions 
tend to be incomplete, inconsistent and informal. Advisory 
databases (e.g., NVD) were introduced to address some of 
these shortcomings. Their objective is not only to provide a 
central place for reporting vulnerabilities, but also to 
standardize their reporting. The Common Vulnerabilities and 
Exposures (CVE)5 dataset creates a publicly available 
dictionary for vulnerabilities, allowing for a more consistent 
and concise use of security terminology in the software 
domain. Once a new vulnerability is revealed and verified by 
security experts, this vulnerability and other relevant 
information (e.g., unique identifier, source URL, vendor URL, 
affected resources and related vulnerabilities from the same 
family group) will be added to the CVE database. The source 
URL refers to the vulnerability (e.g., application vendor, 
external security advisories) by linking directly to the commit 
that contains the source code for patching or a document that 
describes on how to patch the vulnerability. In addition to the 
CVE entry, each vulnerability will also be classified using the 
Common Weakness Enumeration (CWE)6 database. The 
CWE, therefore, provides a common language to describe 
software security weaknesses, by classifying them based on 
their reported weaknesses. NVD, CVE, and CWE can all be 
considering being part of a global effort to manage the 
reporting and classification of known software vulnerabilities.  

                                                            
5 https://cve.mitre.org/ 
6 https://cwe.mitre.org/ 

82



III. MODELING API VULNERABILITIES  
It is generally accepted that inadvertent programming 

mistakes can lead to software security vulnerabilities and 
attacks [31]. Mitigating these vulnerabilities can become a 
major challenge for developers, since not only their own 
source code might contain exploitable code, but also the code 
of third-party APIs or external components used by their 
system. In what follows we introduce a methodology to guide 
developers in identifying the potential impact of vulnerabilities 
at both the system and global level (Fig. 2). Our methodology 
consists of three major steps: knowledge modeling; alignment 
of ontologies; and knowledge inferences and reasoning.  

 
Fig.  2: System overview 

A. Knowledge Modeling 
A key premise of ontologies is their ability to share and 

extend existing knowledge. Our approach builds upon this 
premise, by reusing and extending the integrated software 
security and engineering ontologies introduced in [4]. In 
particular, we extend these ontologies through semantic 
integration (linking) with other repositories (e.g., code 
repositories, VCS systems). We then further enrich the 
semantics of our model by not only capturing domains of 
discourse but also to include semantic relations and properties 
that allow us to take advantage of inference services provided 
by the Semantic Web.  

For our model, we followed a bottom-up modeling 
approach, where we first extract system specific concepts and 
then iteratively abstracted shared concepts in upper ontologies 
(see Fig 3). The resulting four-layer modeling hierarchy is 
similar to the metadata modeling approach introduced by the 
Object Management Group (OMG)7. Each of these layers 
differs in terms of their purpose and their design rationale. 

General Concepts layer: Classes in this top-layer 
represent omnipresent general concepts found in the software 
evolution and security domain.  

Domain-Spanning Concepts layer: This layer represents 
the concepts that span across a number of subdomains (e.g., 
security databases, VCS and source code).  

Domain-Specific Concepts layer: Concepts in this layer 
are common across resources in a particular domain (e.g., 
domain of source code). At the core of the domain specific 
layer, we have several domain ontologies: (1) Software 
                                                            
7 http://www.omg.org/ 

 

sEcurity Vulnerability ONTologies (SEVONT), (2) Software 
Evolution ONtologies (SEON) [33] and (3) Software Build 
Systems ONtologies (SBSON).  

System-Specific Concepts layer: Concepts in this layer 
extend the knowledge from the upper layers through system-
specific extensions.  

Domain Spanning Concepts 

General 
Concepts 

 Concepts Relations & 
Attributes 

Measurements 

Sec. Vuln. 
Traceability 

APIs Sec. 
Assessments

Sec. Patches 
Depedencies

Change 
Couplings

Domain Specific Concepts 
Build 

Systems
Software 

Engineering
Security 

Vulnerabilities

IvyAntMavenHistoryIssue 
Tracking

Source 
CodesOSVDBNVD

Exploits 
DB

System Specific Concepts 

 
 Fig. 3: The SV-AF Ontologies Abstraction Hierarchies [4] 

To improve the readability of the paper, we denote OWL 
classes in italic, individuals are underlined and a dashed 
underline is used for properties. For a complete description of 
our ontologies, we refer the reader to [34]. Fig. 4 provides an 
overview of our knowledge model used for tracing API 
vulnerabilities. The core concepts used for our vulnerability 
analysis are Vulnerabilities, SecurityPatches, and APIs. 
Whenever a Project is identified to be affected by a 
Vulnerability, a SecurityPatch is developed by its project 
vendors. A Committer commits a new Version of a 
VersionedFile containing the security patch through a version 
system (e.g., SVN). VersionedFiles are Files managed by a 
version control system. Files are among the Artifacts that are 
produced when software is created. A project version which is 
released to the public or customer is referred to as a 
BuildRelease (a BuildRelease can dependOn APIs from other 
BuildReleases). A SecurityPatch corresponds to code changes 
introduced to fix some existing VulnerableCode, which is part 
of a CodeEntity, such as ComplexType (i.e., a Class, Interface, 
Enum, etc.) or a Method. For example, if a class or method is 
modified during a security patch, then this code change can be 
used to locate the original VulnerableCode. The OWL classes, 
SecurityPatch and VulnerableCode, are linked in our model 
through the object property identifies. 

B. Ontologies Instances Alignment  
For further knowledge integration among the individual 

ontologies, we take advantage of ontology alignment 
techniques to establish semantic traceability links. These links 
allow us to reduce the semantic gap between ontologies and 
are essential pre-requisites for supporting seamless knowledge 
integration.  

83



 
Fig. 4: The SV-AF’s [4] ontologies concepts involved in an API 

Alignment of SEVONT and SBSON Ontologies. In 
uncertain graphs [35], edges are associated with uncertainties; 
it measures the strength of connectivity between nodes and/or 
edges. An uncertain directed graph is defined as�� �
��� �� 	
, where ��is a set of nodes, � is a set of edges (x, y), 
and �: E � [0, 1] is the weight assignment function (e.g., 
�(x, y) = 0.3 means the associated value on edge (x, y) is 0.3). 
Uncertainty values are interpreted as probabilities.  

In our model, the knowledge base is treated as an uncertain 
graph; where � represents the modeled projects from security 
vulnerability databases and build repositories, � represents 
��
� �������relations (edges) between projects’ instances, 
and �: E � [0,1] is the weight assignment function used by 
Probabilistic Soft Logic (PSL) framework [36]. For example, 
in Fig. 5, the project instance ��from SBSON graph is similar 
to vulnerable product instance ���from SEVONT graph 
through ��
� �������(�(e)) edge.  

 
Fig.  5: SV-AF knowledge base similarity graphs 

Note that � and � represent the projects original data 
sources, Maven and NVD respectively. Additional explanation 
on how the ��
� ������  weights are created, and how PSL 
is implemented and tested to establish the sematic links are 
discussed in[4]. 

Alignment of SEVONT and SEON Ontology. For this 
alignment, we extend the process discussed in [4] to include 
also information from our versioning ontology. Disclosed 

vulnerabilities often contain references to patch information, 
such as explicit revisions/commits in which the vulnerability 
has been fixed. Having this information available, we can 
perform terminology matching to align instances from both 
data sources. For the alignment process, we take advantage of 
reasoning services provided by the Semantic Web to infer 
implicit relationships between vulnerabilities and commits. 
More specifically, for the alignment, we take advantage of 
Semantic Web Rule Language (SWRL)8 rules (Listing 1) to 
establish links between vulnerability and commit instances. 
This alignment will take place if any of the two semantic rules 
will be satisfied: 

Rule 1: Vulnerability ID is explicitly mentioned in a 
commit message.  
Rule 2: Commit/revision ID is explicitly mentioned in the 
patch reference of a vulnerability.  

 
SWRL rule 1: 
�������� �
� ������ ��!��� �� �  �
�

�!
��"�#�
��$�� %
� &���!
��"�#�
��$ ��� %� �  �


' %!
��"�#�
��$(���) ��� %� � �

 

SWRL rule 2: 
�!
��"�#�
��$�� %
� &��*���&�� %� � +
�

&��(��,�%������� +� �  �
� �������� �
�

&�������� ��� �� �  �
 ' %!
��"�#�
��$(���) ��� %� � �

 

Listing 1: SWRL rules for aligning CVE facts with the version ontology 
 

Finally, it should be noted that there is no guarantee that any 
two ontologies in the same domain will align through shared 
concepts, due to ambiguity or lack of such shared concepts 
[4].  

C. Knowledge Inferencing and Reasoning 
The Semantic Web stack includes a scalable, persistent 

knowledge storage infrastructure. Triple-stores9 not only 

                                                            
8 https://www.w3.org/Submission/SWRL/ 
9 Triple-store or RDF store is a purpose-built database for the storage and 
retrieval of triples  through semantic queries. A triple is a data entity 
composed of subject-predicate-object [6]. 

84



provide data persistence but also support some basic scalable 
inference on big data (e.g., RDFS, RDFS++)[4]. In this 
section, we discuss how we take advantage of such inferences 
to a.) trace APIs and their vulnerabilities across knowledge 
boundaries and b.) infer implicit knowledge from these links. 
It should be noted that we omitted the ontology namespace 
prefixes (summarized in Table II) from our illustrative queries 
and rules to improve their readability. 

 
TABLE II: ONTOLOGY NAMESPACES 

Namespace  URL 
RDF http://www.w3.org/1999/02/22-rdf-syntax-ns# 
OWL http://www.w3.org/2002/07/owl# 

SBSON http://aseg.cs.concordia.ca/segps/ontologies/domain-
spanning/2015/02/build.owl# 

SEON http://se-on.org/ontologies/domain-specific/2012/02/code.owl# 

SEVONT http://aseg.cs.concordia.ca/segps/ontologies/domain-
spanning/2015/02/vulnerabilities.owl# 

 
Same-As inference: A commonly used predicate for 

inferring new knowledge is���
� ������, which is used to 
align two concepts. As we discussed in our prior work [4], 
having the weighted alignment links between two ontologies, 
a SPARQL query can now be used to retrieve information 
across ontology boundaries. We align vulnerability 
information from the SEVONT ontology and their 
corresponding instances in SBSON ontology based on a 
similarity threshold. Using the following SPARQL query 
(Listing 2), we can now take advantage of the ��
� ������ 
predicate (if inference is enabled): 

 
Listing 2: SPARQL query returning same as projects vulnerabilities 

 
Transitive closure inference: The transitive closure of a 

binary relation , on a set of concepts � is the minimal 
transitive relation ,- on � that contains�,. Thus ��,.# for any 
instances � and # of � provided that there exist �/��0�1 ��2 
with �/ � �, �� � #, and �3�,��340 for all 5 6 " 7 8. The 
transitive closure ���
 of a graph is a graph which contains an 
edge 9!� %: whenever there is a direct path from !�to�%�[37], 
[38]. However, this can be expressed in OWL through the 
owl:TransitiveProperty construct. We define code: 
invokesMethod to be a bi-directional transitive property of 
type owl:TransitiveProperty (e.g., code:invokesMethod 
rdf:type owl:TransitiveProperty). Through this transitive 
construct, we are now able to retrieve a list of all methods that 
have a direct and transitive invocation dependency to a 
specified method, and vice versa (see Listing 3).  

 
Listing 3: SPARQL query returning transitive method calls 

Subsumption inference: A crucial aspect of an ontology 
model is the availability of a subsumption hierarchy between 

its concepts [39]. For example, a Method or Class is a sub-
concept of a CodeEntity. Subsumption hierarchies add 
significant power to ontologies [29] in global source code 
(APIs) analysis because many of the attributes of an entity 
(concept or instance) are attached to its super concepts. Given 
a set of concepts C, the goal of the inference engine is to 
discover all subsumption relationships among pairs of 
concepts in C.  More formally, we can denote that concept 
�0�is a subconcept of �; by��0 < � �;. Subsumption is 
directional [39]: if �0 < � �;, then �; = � �0unless �0 and �; are 
synonyms.  A similar subsumption can be inferred from OWL 
properties that can subsume each other.  

In our approach, we create a simple hierarchy of object 
properties to support such subsumption inference. Fig. 6 
shows the property hierarchy we use to model source code 
dependencies. Given this property hierarchy and the 
subsumption inference, a simple query (Listing 4) can now 
identify all code entities that transitively depend on a given 
code entity independent of their type (property) (e.g., method 
invocations, interface implementation). Note, subsumption 
differs from the IsA relationship that typically holds between 
an instance and a concept (e.g., ClassX IsA CodeEntity). 
 

hasSuperClass

invokesConstructor

dependsOn

hasDataTypehasReturnTypeimplementsinterfaceinstantiatesClass

usesComplexType

hasSuperType hasSubType

hasSubInterfacehasSubClasshasSuperInterface

invokesMethod accessesField

 

Fig.  6: Hierarchy of code properties 
 

 
Listing 4: dependsOn subsumption query 

IV. CASE STUDY 
In what follows, we discuss the applicability of our 

modeling approach tin tracing and analyzing known 
vulnerabilities at intra and inter-project level.  

A. Case Study: CVE-2015-0227 
Objective: The objective of our case study is to show, how 

our modeling approach can support the analysis and tracing of 
potential security vulnerability impacts across software 
components (APIs). Furthermore, the study also highlights the 
flexibility of our modeling approach, in terms of its seamless 
knowledge and analysis result integration, as well as the use of 
Semantic Web reasoning to infer new knowledge.  

Approach: For the case study, we take advantage of same-
as and transitive inferences to identify projects that are 
directly and indirectly affected by known security 
vulnerabilities. In addition, we also take advantage of 
transitive and subsumption inferences applied at the source 
code level to identify vulnerable APIs and trace their impact to 
external dependencies. The inferences consider both, 

85



dependencies within and across software project boundaries 
(Fig. 7).  

Case study setting: We use a publicly disclosed 
vulnerability, which has been reported in the NVD repository 
as CVE-2015-0227 and describes the following vulnerability 
for Apache WSS4J10:  

“Apache WSS4J before 1.6.17 and 2.x before 2.0.2 allows remote 
attackers to bypass the requireSignedEncryptedDataElements 
configuration via a vectors related to ‘wrapping attacks’.”. 

 
Fig.  7: Inferred project dependencies in SBSON 
 

This vulnerability affects the management of permissions, 
privileges and other security features that are used to perform 
access control to Apache WSS4J versions before 1.6.17 and to 
version 2.x before 2.0.2.  

Apache WSS4J is an API which provides a Java 
implementation of the primary security standards for Web 
Services and is commonly used by projects as an external 
component. In this example, a vulnerability is disclosed for 
this API. Developers using Apache WSS4J in their project 
have now to determine whether their application is affected by 
this vulnerability or not. Existing source code analysis tools 
are capable of identifying, whether a vulnerable code fragment 
(e.g., code fragment or variable), which has been reported in 
the NVD vulnerability, is used directly within a project. 
However, they are not capable of identifying whether the 
external libraries used by the developer’s project might have 
been affected by this vulnerability.  

In what follows, we discuss how our approach takes 
advantages of originally heterogeneous knowledge resources: 
NVD, VCS (for only Apache WSS4J), and Maven and 
integrates these resources to determine direct and indirect 
dependencies to vulnerable components. In the process, we 
extract and populate facts from a) NVD: information for the 
CVE-2015-0227 vulnerability (including patch references); b.) 
VCS: source code and commit messages for Apache WSS4J 
(version 1.6.16 and 1.6.17) and c.) Maven repository: all build 
dependencies on Apache WSS4J 1.6.16 (242 dependencies).  

Tracing vulnerability patch information to commit: 
Security databases provide descriptions of vulnerabilities, their 
potential effects, and corresponding patches (if applicable). 
The objective of our study is to establish a traceability link 
between the unique vulnerability identifier (CVE) and the 
commit which fixes this vulnerability. For establishing these 
                                                            
10 https://ws.apache.org/wss4j/ 

links, we apply a two-step process, by first mining the NVD 
repository for patch links that include a reference an entry in a 
versioning repository. We then extract all commit logs within 
the versioning repository that have a reference to a CVE-ID. 
Fig8 shows an example of such a commit log message entry: 
“[CVE-2015-0227] Improving required signed elements detection. “ 

 (a) Report detail for CVE-2015-0227 from NVD

 (b) A Wss4j bug-fix commit detail for CVE-2015-0227 from SVN  
Fig.  8: Extracting patch relevant information from NVD and commit 
messages 
 
Identify vulnerable code fragments in APIs: A vulnerable code 
fragment corresponds to a set of lines of code (LoC), which 
has been modified to fix a vulnerability [40]. In our approach, 
we use the standard diff command to identify the vulnerable 
code fragments, by comparing it with its unpatched version. 
Fig. 9 shows an excerpt of the diff output for 
WSSecurityUtil.java revisions r1619358 and r1619359. The 
example shows that method verifySignedElement can be 
identified to contain the vulnerable code fragment. Using the 
same approach, we can now populate any method or class that 
has been either deleted or modified as part of a vulnerability 
fix (commit) in our sevont:VulnerableCode class (see Fig. 4).  
 
--- webservices/wss4j/trunk/ws-security-dom/src/main/java/org/apache/wss4j/dom/util/WSSecurityUtil.java2014/08/21 
11:11:12 1619358
+++ webservices/wss4j/trunk/ws-security-dom/src/main/java/org/apache/wss4j/dom/util/WSSecurityUtil.java2014/08/21 
11:12:58 1619359

@@ -24,6 +24,7 @@
 ...

+import org.apache.wss4j.dom.WSDocInfo;
 ...

     
-    public static void verifySignedElement(Element elem, Document doc, Element securityHeader)
+    public static void verifySignedElement(Element elem, WSDocInfo wsDocInfo)
         throws WSSecurityException {
-        final Element envelope = doc.getDocumentElement();
-        final Set<String> signatureRefIDs = getSignatureReferenceIDs(securityHeader);

             ...
     

old revision

new revision
start line index and number of lines of 

the old, and new revisions
added line is 

preceded by a `+`

deleted line is 
preceded by a `-`

 
Fig.  9: Diff output for WSS4J r1619358 and r1619359 

 

86



Given our populated ontologies, we can now infer a 
similarity link between instances of the vulnerable product 
(e.g., Apache WSS4J 1.6.16) in SEVONT and SBSON (Build 
repository) and links between the vulnerability patch reference 
(CVE-2015-0227) and SEON (using the rules in Listing 1) to 
the commit containing the patch.  

 

 
Fig. 10: Inferred links between vulnerabilites.owl, code.owl, and 
versioning.owl 

 
Based on the inferred links (see Fig. 10) and using the 

SPARQL query in Listing 5, we can now further restrict our 
transitive dependency analysis to include only those 
components that have an actual call dependency to the 
vulnerable source code. 
  

 
Listing 5: Query to retrieve vulnerable code fragments across project 
boundaries 

 
Findings: Table III summarizes the results from our case 

study for CVE-2015-0227. We report on the manually verified 
results obtained from executing our SPARQL queries 
(Listings 4 and 5). Table III shows that 15 of the 242 crawled 
dependent projects actually use the API from our vulnerable 
project. The results highlight that there are still systems 
(6.19%) that rely on libraries with known security 
vulnerabilities. Moreover, 10 of these 15 dependent projects 
not only include the API but also call the class 
WSSecurityUtil, which contains the vulnerable code. However, 
it should be noted that for our specific case study, none of the 
projects actually called and executed the vulnerable method 
(verifySignedElement) within the WSSecurityUtil.  

TABLE III: RESULTS 

Project Crawled 
Dependencies 

Actual 
usage  

Vuln. 
Classes 
usage  

Vuln. 
Methods 

usage 
Apache WSS4J 1.6.16 242 15 10 0 

In order to evaluate if our approach is capable of correctly 
identifying calls to vulnerable methods, we conducted an 
additional controlled experiment. For this experiment, we 
manually seeded a method call in Apache CXF-bundle 2.6.15 

that invokes the vulnerability in Apache WSS4J API. More 
specifically, we downloaded the source code for Apache CXF-
bundle 2.6.15 and modified its org.apache.cxf.ws.security.wss4j. 
policyhandlers package. Fig. 11 shows the partial class diagram 
of the modified packages. We modified the includeToken method 
of the AbstractBindingBuilder class to include a direct call to 
the vulnerable WSSecurityUtil.verifySignedElement method. 
We also added the SVAFSymmetricBindingHandler and 
SVAFAsymmetricBindingHandler to extend SymmetricBindingHandler 
and AsymmetricBindingHandler to be able to see if our approach also 
supports the transitive call dependency analysis correctly. We 
then re-populate the source code ontologies with the new 
(modified) code facts and invoke again the same query we 
used earlier in the case study.  

 
Fig.  11: Class diagram for our modified package 

 
The results of this query are shown in Table IV, which 

includes the classes within our modified project that directly 
or indirectly invoke the vulnerable method 
WSSecurityUtil.verifySignedElement.  
TABLE IV: RESULTS OF DIRECT AND INDIRECT USAGE OF THE 
VULNERABLE METHOD WSSecurityUtil.verifySignedElement 

Class 
# Indirect 
Vulnerabl
e Methods 

Indirect Vulnerable Methods 

AbstractBi
ndingBuil
der.java 

4 

handleSupportingTokens(.SupportingToken,boolean,
Map, Token, Object) 
getSignatureBuilder(TokenWrapper, Token, boolean, 
boolean) 
getSignatureBuilder(TokenWrapper, Token, boolean) 
doSVAFAction() 

Main.java 1 test1() 

For sake of simplicity and readability, we only include public 
and protected methods in the result set. We observed that the 
vulnerability introduced in AbstractBindingBuilder.includeToken 
propagates through several methods. More specifically, the 
doSVAFAction method in this example is indirectly affected due 
to its usage of the getSignatureBuilder method. 
SVAFAsymmetricBindingHandler extends AbstractBindingBuilder and 
overrides the getSignatureBuilder method. When the method 

87



doSVAFAction is invoked from test2, the overridden method 
from subclass SVAFAsymmetricBindingHandler is called and 
method test2 is correctly identified by our approach as not 
being affected by the vulnerability. 

B. Comparison against existing tools 
We further evaluated our approach, by comparing it 

against existing tools that detect known security vulnerabilities 
in source code across project boundaries. For our comparison, 
we consider the following tools: OWASP Dependency-Check 
(DC) [41], which is an open source tool, and a closed-source 
tool from SAP labs [30].  

OWASP DC performs a static dependency analysis to 
determine if libraries with known vulnerabilities are included 
in an application. During the analysis, the tool collects 
information about the vendor, product, and version. The 
information is then used to identify the Common Platform 
Enumeration (CPE). If a CPE is identified, a listing of 
associated Common Vulnerabilities and Exposure (CVE) 
entries are reported.  

 
  <entry id=" CVE-2016-9878 "> 
  ... 
    <vuln:vulnerable-software-list> 
      <vuln:product> cpe:/a:pivotal_software:spring_framework:3.2.2 </vuln:product> 
      <vuln:product> cpe:/a:pivotal_software:spring_framework:3.2.3 </vuln:product> 
      <vuln:product> cpe:/a:pivotal_software:spring_framework:3.2.4 </vuln:product> 
      ... 
 

The SAP tool relies on a dynamic source code level 
analysis to identify if a vulnerable piece of code is either used 
directly or indirectly. The tool uses execution traces which are 
collected after instrumenting the code and all bundled 
libraries. Since we did not have direct access to the SAP tool, 
we replicated their experiments to compare our results with the 
ones reported in [30]. 

Given that the OWASP DC tool does distinguish whether a 
vulnerable library code is used or not, we limit our comparison 
to: “identify if a project depends on libraries with disclosed 
vulnerabilities independent of the use of the vulnerable source 
code”. Table V reports the results from our comparison, which 
includes true positives (TP), false negatives (FN), false 
positives (FP) and true negatives (TN). The results show that 
for CVE-2013-2186, both, our approach and OWASP DC, did 
not report the vulnerable API. This miss is due to the fact that 
NVD did not include FileUpload 1.2.2 in the list of affected 
products. The vulnerability, however, is reported in several 
JBoss projects, which make use of the DiskFileItem class in 
Apache FileUpload. Our approach currently models only 
products explicitly mentioned to be affected in NVD. 

OWASP DC reported CVE-2014-9527 as a vulnerability in 
POI 3.11 Beta 1. A manual inspection of the patch showed 
that the class “org.apache.poi.hslf.HSLFSlideShow” contains 
the patch for the vulnerable code but is not used by “poi-
3.11.beta1.jar”. Instead, this patch is distributed as part of the 
POI-HSLF component. 

For the vulnerability CVE-2013-0248, the patch is located 
in the default configuration file “using.xml” and the comment 
of the Java class “DiskFileItemFactory” (but not any 
executable code). As a result, the SAP tool does not identify 
the archive as being affected by vulnerable code. 

TABLE V: COMPARISON OF ANALYSIS RESULTS 

Vulnerability Library Our 
Approach 

SAP 
tool 

OWASP 
DC 

CVE-2014-0050 Apache 
FileUpload 

1.2.2 

TP TP TP 
CVE-2013-2186 FN TP FN 
CVE-2013-0248 TP FN TP 

CVE-2012-2098 Apache 
Compress 1.4 TP TP TP 

CVE-2014-3577 Apache 
HttpClient 4.3 TP TP TP 

CVE-2014-9527 Apache POI 
3.11 Beta 1 

TN TN FP 
CVE-2014-3574 TP TP TP 
CVE-2014-3529 TN TN TN 

V. IMPLICATIONS 
As our case study illustrates, our ontology-based 

knowledge modeling approach can integrate information 
originating from different heterogeneous knowledge 
resources. In what follows, we discuss how our approach 
overcomes a number of challenges identified with both 
OWASP and SAP tools.  

Data integration challenges. Vulnerability and 
dependency management make use of different naming 
schemes and nomenclatures: There exist many language-
dependent approaches for referencing entities, making the 
linking of entities across knowledge resources often a difficult 
task. Consider the following example: Mapping the Spring Core 
4.0.3.RELEASE between Maven and NVD. Maven GAV identifier 
represents this component as groupId=org.springframework; 
artifactId=spring-core; version=4.0.3.RELEASE. While the CPE for the 
same component in NVD is: vendor=pivotal; product=spring_framework; 
version=4.03 
As a result of this identifier naming inconsistency, the 
automatic mapping between GAV identifiers in Maven with 
their corresponding CPE in NVD becomes a major challenge 
e.g., the vendor in our example should be Pivotal and not 
springframework.  While a human can easily recognize 
the correct mapping, this is not the case for an automated 
solution. Both OWASP DC and the SAP tool compute the 
SHA-1 of the archives and perform a lookup in Maven central 
to address this problem. While this approach improves the 
recall (number of correct mappings found), it also introduces 
many false positives and false negatives, which affects the 
accuracy of these tools. Moreover, both tools are limited in 
their ability to match vulnerabilities and CPEs, making them 
not only prone to errors but also limit the scope of the analysis 
to direct dependencies. In contrast, our approach addresses 
these challenges by taking advantage of the PSL alignment 
framework. This eliminates the need for one-to-one 
assignments and establishes weighted links between instances 
of different modeled ontologies for different data sources. 
Moreover, our semantic approach takes advantage of semantic 
reasoning to infer transitive dependencies.  

Flexibility. While the use of run-time information (traces) 
can improve the precision (SAP tool), this type of analysis 
depends on the quality and coverage achieved by these traces. 
Furthermore, the SAP tool focuses on intra-project analysis, 

88



whereas our approach also supports inter-project analysis.  As 
we further show in our case study, by taking advantage of 
automated reasoning we are able to infer sub-properties 
(subsumption) and transitive closure dependencies. Using 
these inferences, we can transform often complex and 
proprietary source code analysis tasks to simpler and easy to 
write SPARQL queries. For example, the isSubClassOf, 
isSubInterfaceOf, invokesMethod, and invokesConstructor are 
all sub-properties of the transitive dependsOn property. As 
such, a simple query (Listing 5), can now identify all code 
entities that transitively depend on a given vulnerable code 
entity independent of the type, method invocations or inherited 
classes/interfaces (via subsumption). As we showed in our 
controlled study, vulnerable classes can create a backdoor 
(e.g., through inheritance) for the invocation of vulnerable 
methods, if these methods are not overridden within the client. 
With the growing popularity of using 3rd-party APIs [42], the 
risk of such transitive vulnerable method invocations 
increases.  

Information silos challenges. Although both analysis 
tools, SAP and OWASP DC are linking different data sources, 
these resources still remain information silos. They still lack 
the standardization, knowledge sharing and analysis result 
integration required to make them true information hubs. In 
contrast, our approach introduces a unified standardized 
representation using ontologies, which support seamless 
knowledge integration, interoperability and sharing even on a 
global scale. RDF based triple-stores ensure not only 
persistence of the data but also provide scalability and the use 
unique resource identifiers (URIs), eases the integration with 
other knowledge resources, even at a global scale. 

VI. THREATS TO VALIDITY 
An internal threat to validity is that our case study relies on 

our ability to mine facts from both, the Maven and NVD 
repositories to populate our ontologies. A common problem 
then mining software repositories is that repositories often 
contain noise in their data, due to data ambiguity, 
inconsistency or incompleteness. We are able to mitigate this 
threat since vulnerabilities published in NVD are manually 
validated and managed by security experts and therefore make 
this data less prone to noise. Similarly, the Maven repository 
captures dependencies related to a particular build file, while 
ensuring that the dependencies are fully specified and 
available, limiting not only ambiguities and inconsistency at 
the project build but also for the complete dataset.  Regarding 
the knowledge obtained from NVD, not all identified 
vulnerabilities include complete references to the actual source 
commit of patches, limiting our ability to automatically extract 
the source code information related to such a particular patch.  

In terms of external threats, the presented experiments 
might not be generalizable for non-MAVEN projects. This 
threat is mitigated by our modeling approach with its different 
abstraction layers. More specifically, we extract and model 
domain-specific ontologies (e.g. build ontology), which share 
concepts and their relations that are common this domain (e.g., 
the domain of build repositories). Another external threat to 

validity for our research is that for our evaluations we relied 
on quantitative analysis, limiting our ability to generalize the 
applicability and validity of the approach. In order to mitigate 
this threat, an additional qualitative analysis has to be 
performed in the form of user studies, which will allow for an 
evaluation of both, the applicability of the approach and the 
analysis of the result sets from an expert user perspective. 

VII. RELATED WORK 
Several approaches for static vulnerability analysis and 

detection in source code exist (e.g., [24], [26], [43], and [23]). 
Plate et. al [43] proposed a technique that supports the impact 
analysis of vulnerability based on code changes introduced by 
security fixes. Their approach relies on a dynamic analysis to 
determine if a vulnerable code was executed within a given 
project. In contrast, while less precise in some cases, we 
provide a more holistic approach, which not only considers all 
possible executions but also supports a more general intra and 
inter-project dependency analysis. We also take advantage of 
semantic reasoning services to infer implicit facts about the 
vulnerable code usages within the system, to support bi-
directional dependency analysis – including both impacts to 
external dependencies and vice versa.  

Nguyen et. al [44] proposed an automated method to 
identify vulnerable code based on older releases of a software 
system. Their approach scans the code base of each prior 
version for code containing vulnerable code fragments. In 
contrast, our approach takes advantage of multiple knowledge 
resources, providing a greater flexibility in the analysis. 

Mircea et al. [45] introduce in their Vulnerability Alert 
Service (VAS) an approach that notifies users if a 
vulnerability is reported for software systems. VAS depends 
on the OWASP Dependency-Check tool. VAS reports the 
vulnerable projects identified by the OWASP tool and 
therefore also lacks the support for transitive dependencies 
analysis of vulnerable components. 

VIII. CONCLUSION AND FUTURE WORK 
This paper presented an ontological-based modeling 

approach that allows us to trace API security impact within 
application boundaries and its global dependencies. Using 
multi-layers of abstraction, our modeling approach can not 
only provide a generic analysis approach but also supports the 
seamless integration of other knowledge resources in the 
software engineering domain. This formal knowledge 
representation allows us to take advantage of inference 
services provided by the Semantic Web, providing additional 
flexibility compared to traditional proprietary analysis 
approaches. 

As part of our future work, we will further extend our 
knowledge base to include other vulnerability and software 
engineering knowledge resources. We will develop an Eclipse 
plugin, to include a software developer’s context in the 
dependency analysis to further improve the relevance of 
analysis results. 

 
 

89



REFERENCES 
[1] A. Williams, Jeff and Dabirsiaghi, “The unfortunate reality of 

insecure libraries,” Asp. Secur. Inc, no. March, pp. 1--26, 2012. 
[2] OWASP, “Using Components with Known Vulnerabilities,” 2013. 

[Online]. Available: 
https://www.owasp.org/index.php/Top_10_2013-A9-
Using_Components_with_Known_Vulnerabilities. [Accessed: 23-
Sep-2016]. 

[3] OWASP, “Top 10,” 2013. [Online]. Available: 
https://www.owasp.org/index.php/Top_10_2013-Top_10. 
[Accessed: 23-Sep-2016]. 

[4] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “SV-AF – A Security 
Vulnerability Analysis Framework,” in IEEE 27th International 
Symposium on Software Reliability Engineering (ISSRE), 2016. 

[5] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining 
trends of library usage,” in Proceedings of the joint international 
and annual ERCIM workshops on Principles of software evolution 
(IWPSE) and software evolution (Evol) workshops, 2009, pp. 57--
62. 

[6] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” 
Sci. Am., vol. 284, no. 5, pp. 34–43, May 2001. 

[7] T. R. Gruber, “A translation approach to portable ontology 
specifications,” Knowl. Acquis., vol. 5, no. 2, pp. 199–220, Jun. 
1993. 

[8] M. Uschold and M. Gruninger, “Ontologies: principles, methods 
and applications,” Knowl. Eng. Rev., vol. 11, no. 2, p. 93, Jun. 1996. 

[9] O. Corcho, M. Fernández-López, and A. Gómez-Pérez, 
“Ontological Engineering: Principles, Methods, Tools and 
Languages,” in Ontologies for Software Engineering and Software 
Technology, Springer Berlin Heidelberg, pp. 1–48. 

[10] F. Ruiz and J. R. Hilera, “Using Ontologies in Software Engineering 
and Technology,” in Ontologies for Software Engineering and 
Software Technology, Springer Berlin Heidelberg, pp. 49–102. 

[11] F. Baader, I. Horrocks, and U. Sattler, “Description Logics as 
Ontology Languages for the Semantic Web,” in Mechanizing 
Mathematical Reasoning, 2005, pp. 228–248. 

[12] B. Decker, J. Rech, E. Ras, B. Klein, and C. Hoecht, “Selforganized 
Reuse of Software Engineering Knowledge Supported by Semantic 
Wikis,” in Proceedings of the Workshop on Semantic Web Enabled 
Software Engineering (SWESE), 2005, p. 76. 

[13] Y. Zhang, J. Rilling, and V. Haarslev, “An Ontology-based 
Approach to Software Comprehension - Reasoning about Security 
Concerns,” in Computer Software and Applications Conference, 
2006. COMPSAC’06. 30th Annual International, 2006, pp. 333--
342. 

[14] B. Wouters, D. Deridder, and E. Van Paesschen, “The use of 
ontologies as a backbone for use case management,” in European 
Conference on Object-Oriented Programming (ECOOP 2000), 
Workshop: Objects and Classifications, a natural convergence, 
2000. 

[15] U. Nonnenmann and J. K. Eddy, “KITSS-a functional software 
testing system using a hybrid domain model,” in Proceedings 
Eighth Conference on Artificial Intelligence for Applications, pp. 
136–142. 

[16] A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and C. Welty, 
“Supporting online problem-solving communities with the semantic 
web,” Proc. 15th Int. Conf. World Wide Web - WWW ’06, p. 575, 
2006. 

[17] H. Hans-Jörg, A. Korthaus, S. Seedorf, and P. Tomczyk, “KOntoR: 
An Ontology-enabled Approach to Software Reuse,” in Proceedings 
of 18th International Conference on Software Engineering and 
Knowledge Engineering, 2006. 

[18] D. Jin and J. R. Cordy, “A service sharing approach to integrating 
program comprehension tools,” in Proceedings of the European 
Software Engineering Conference, Helsinki, Finland, 2003. 

[19] B. Henderson-Sellers, “Bridging metamodels and ontologies in 
software engineering,” J. Syst. Softw., vol. 84, no. 2, pp. 301–313, 
Feb. 2011. 

[20] R. Witte, Y. Zhang, and J. Rilling, “LNCS 4519 - Empowering 
Software Maintainers with Semantic Web Technologies,” pp. 37–
52. 

[21]  and K. K. A. C. M. Gutheil, “On the Relationship of Ontologies 
and Models,” in Proceedings of the 2nd International Workshop on 
Meta-Modelling (WoMM), 2006, pp. 47–60. 

[22] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object 
sensitivity for points-to analysis for Java,” ACM Trans. Softw. Eng. 
Methodol., vol. 14, no. 1, pp. 1–41, Jan. 2005. 

[23] M. Hirzel, D. Von Dincklage, A. Diwan, and M. Hind, “Fast online 
pointer analysis,” ACM Trans. Program. Lang. Syst., vol. 29, no. 2, 
p. 11–es, Apr. 2007. 

[24] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, “Bunch: 
a clustering tool for the recovery and maintenance of software 
system structures,” in Proceedings IEEE International Conference 
on Software Maintenance - 1999 (ICSM’99). “Software 
Maintenance for Business Change” (Cat. No.99CB36360), 1999, 
pp. 50–59. 

[25] M. P. Robillard, “Topology analysis of software dependencies,” 
ACM Trans. Softw. Eng. Methodol., vol. 17, no. 4, pp. 1–36, Aug. 
2008. 

[26] J.-D. Choi, M. Burke, and P. Carini, “Efficient flow-sensitive 
interprocedural computation of pointer-induced aliases and side 
effects,” in Proceedings of the 20th ACM SIGPLAN-SIGACT 
symposium on Principles of programming languages - POPL ’93, 
1993, pp. 232–245. 

[27] M. Weiser, “Program Slicing,” IEEE Trans. Softw. Eng., vol. SE-10, 
no. 4, pp. 352–357, Jul. 1984. 

[28] A. Rountev, S. Kagan, and M. Gibas, “Static and dynamic analysis 
of call chains in java,” ACM SIGSOFT Softw. Eng. Notes, vol. 29, 
no. 4, p. 1, Jul. 2004. 

[29] D. Binkley, “Source Code Analysis: A Road Map,” in Future of 
Software Engineering (FOSE ’07), 2007, pp. 104–119. 

[30] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for 
vulnerabilities in open-source software libraries,” in 2015 IEEE 
International Conference on Software Maintenance and Evolution 
(ICSME), 2015, pp. 411–420. 

[31] A. Williams, Jeff and Dabirsiaghi, “The unfortunate reality of 
insecure libraries,” Asp. Secur. Inc, pp. 1--26, 2012. 

[32] N. McNeil, R. A. Bridges, M. D. Iannacone, B. Czejdo, N. Perez, 
and J. R. Goodall, “PACE: Pattern Accurate Computationally 
Efficient Bootstrapping for Timely Discovery of Cyber-security 
Concepts,” in 2013 12th International Conference on Machine 
Learning and Applications, 2013, pp. 60–65. 

[33] M. Würsch, G. Ghezzi, M. Hert, G. Reif, and H. C. Gall, “SEON: a 
pyramid of ontologies for software evolution and its applications,” 
Computing, vol. 94, no. 11, pp. 857–885, Nov. 2012. 

[34] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “SE-GPS,” 2015. 
[Online]. Available: http://aseg.cs.concordia.ca/segps. [Accessed: 
26-Sep-2015]. 

[35] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “k-nearest 
neighbors in uncertain graphs,” Proc. VLDB Endow., vol. 3, no. 1–
2, pp. 997–1008, Sep. 2010. 

[36] A. Kimmig, S. Bach, M. Broecheler, B. Huang, and L. Getoor, “A 
short introduction to Probabilistic Soft Logic.,” in Proceedings of 
NIPS Workshop on Probabilistic Programming: Foundations and 
Applications (NIPS Workshop-12), 2012. 

[37] A. V. Aho, M. R. Garey, and J. D. Ullman, “The Transitive 
Reduction of a Directed Graph,” SIAM J. Comput., vol. 1, no. 2, pp. 
131–137, Jun. 1972. 

[38] S. Skiena, Implementing Discrete Mathematics: Combinatorics and 
Graph Theory with Mathematica. Addison-Wesley, 1990. 

[39] D. Movshovitz-Attias, S. E. Whang, N. Noy, and A. Halevy, 
“Discovering Subsumption Relationships for Web-Based 
Ontologies,” in Proceedings of the 18th International Workshop on 
Web and Databases - WebDB’15, 2010, pp. 62–69. 

[40] V. H. Nguyen, S. Dashevskyi, and F. Massacci, “An automatic 
method for assessing the versions affected by a vulnerability,” 
Empir. Softw. Eng., Dec. 2015. 

[41] S. S. Jeremy Long, “OWASP Dependency Check,” 2015. [Online]. 
Available: 
https://www.owasp.org/index.php/OWASP_Dependency_Check. 
[Accessed: 10-Mar-2015]. 

[42] Y. Mileva, V. Dallmeier, and A. Zeller, “Mining API popularity,” 
Testing--Practice Res. Tech., pp. 173–180, 2010. 

90



[43] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for 
vulnerabilities in open-source software libraries,” in 2015 IEEE 
International Conference on Software Maintenance and Evolution 
(ICSME), 2015, pp. 411–420. 

[44] V. H. Nguyen, S. Dashevskyi, and F. Massacci, “An automatic 
method for assessing the versions affected by a vulnerability,” 
Empir. Softw. Eng., Dec. 2015. 

[45] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen, “Tracking 
known security vulnerabilities in proprietary software systems,” in 
IEEE 22nd International Conference on Software Analysis, 
Evolution, and Reengineering (SANER), 2015, pp. 516–519. 

 

91


